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Abstract. The effect of anisotropic interactions on the eigenvalue spectrum of the row-to-row 
transfer matrix of critical lattice spin models is investigated. It is verified that the predictions 
of conformal theory apply to anisotropic systems if one allows for spatial rescaling by 
incorporating an anisotropy factor I =  ( L I ~ / ~ . ~ )  sin 8 where as and are lattice spacings 
and 0 is an angle describing the anisotropy. For exactly solvable models these anisotropy 
angles can be calculated analytically using comer transfer matrices. This is done for the 
eight-vertex model, hard hexagons and interacting hard squares and it is found that 
8 = m / A ,  101u1/3 and 5u respectively where U is the spectral parameter and A is the 
crossing parameter. For each of these models, the amplitude of the finite-size corrections 
to the free energy at criticality is found to be of the form ?r[c/6N2 where is the anisotropy 
factor and the central charge or conformal anomaly is given by c = I ,  4/5 and 7/10 
respectively. This is an analytic result for the eight-vertex model. For the hard hexagon 
and square models the largest eigenvalues are found accurately by numerically solving 
their inversion identities for various anisotropies and strip widths up to N = 48. Finally, 
we argue that the anisotropy angle for magnetic hard squares and the q-state Potts models 
is also given by 8 = m / A ,  so this result is quite general. 

For conformally invariant two-dimensional lattice spin models at criticality, the ampli- 
tude of the finite-size corrections to the free energy is linearly related to the conformal 
anomaly or central charge c that characterises different universality classes (Blote et 
a1 1986). Similarly, the scaling dimensions of scaling operators are simply related to 
the asymptotics of the transfer matrix eigenvalues for finite width strips (Cardy 1986, 
1987). This gives a very powerful method for determining critical exponents and 
universality classes. Unfortunately, to be conformally invariant, a spin system must 
first of all be spatially isotropic. However, if anisotropic interactions are present and 
there is a single correlation length exponent, one can restore the isotropy and hence 
conformal invariance by rescaling the lattice spacings in appropriate directions (Barber 
et al 1984). In general this deforms a square unit cell into a parallelogram as shown 
in figure 1. The anisotropy can therefore be described by the two lattice spacings a,, 
a, and an angle 6 or equivalently an anisotropy factor 5 = ( a Y /  a,)  sin 6. The purpose 
of this letter is to report explicit calculation of 8 for several solvable lattice models 
and to investigate the effect of anisotropy on universal finite-size corrections. 

Consider a lattice made up of N columns and M rows of unit parallelograms as 
shown in figure l ( c ) .  In the complex notation of Cardy (1986), the sides I ,  1’ are given 

(1) 

by 
1 = a,N I’ = a,M(sin 6 + i cos 6 ) .  
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Figure 1.  Rescaling of lattice spacings distorts a unit cell ( a )  into a parallelogram ( b ) .  
Spins on each corner are denoted by a, b, c, d and full and broken lines symbolise 
interactions. A lattice of N columns and M rows form a parallelogram (c) of dimension 
I x I' where I' is complex. 

( 5 )  lb) I cl 

Let A, = exp( - E , ) ,  n = 0,1, . . . be the eigenvalues of the row-to-row transfer matrix 
of a strip of width N with periodic boundary conditions. Then the prediction of the 
theory of conformal invariance (Cardy 1986), modified to incorporate anisotropy, is 
that for large N 

21r a,, 

N a* 
Re E,  = - - sin 8(xn - c /  12) + Nf 

21r ay 2 Tj,  ImE,=--cases,+- 
N a x  P 

where e is the anisotropy angle, f is the bulk free en rgy, c is the conformal anomaly 
and x,, s, are the scaling dimension and spin respectively of the scaling operator 
associated with the nth eigenstate. For the largest eigenvalue A. we set X O =  so=O. 
The phase factors 27rj,/p (J,, = 0,1, . . . , p - 1)  occur when translational symmetry is 
broken in an adjoining ordered phase and the ordered structure repeats itself only 
after p translations along the y direction. 

In this letter we will consider models where the anisotropic interactions preserve 
reflection symmetry with respect to the diagonals ac and bd of figure l (6) .  This is the 
case when the anisotropy is due to asymmetric interactions along the diagonals. For 
a square lattice with nearest-neighbour interactions only, the same situation is achieved 
by rotating the lattice through 45", or equivalently, by considering the diagonal-to- 
diagonal transfer matrix. In such cases ax and ay must be equal and the anisotropy 
is completely characterised by the single anisotropy factor 5 = sin 8. The effective or 
anisotropy angle 8 has been obtained for nearest-neighbour Ising models by Barber 
er a1 (1984) using corner transfer matrices. Here we use these methods to obtain 6 
for the eight-vertex and hard hexagon (square) models. The predictions of conformal 
invariance (2), as applied to critical anisotropic systems, will then be tested by obtaining 
the finite-size corrections directly. 

In general, for exactly solvable models, the one-point functions can be calculated 
analytically using corner transfer matrices. Moreover, it is a simple consequence of 
conformal invariance (Cardy 1987) that, for a wedge of angle 8 wrapped onto a cone 
with its composite edges identified, the apex exponents are given by xapex = (21r/6)x 
where x is the bulk exponent. Since, for some order parameter, both x and xapex can 
be calculated from the eigenvalues of the corner transfer matrices so can 8. We have 
done this for the eight-vertex and hard hexagon (square) models using the known 
eigenvalues of the corner transfer matrices (Baxter 1981,1982, Baxter and Pearce 1983). 
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The critical eight-vertex model can be mapped (Baxter 1982) onto the critical 
six-vertex model with face weights parametrised as 

= sin(A - U )  w 2  = sin U w 3  =sin A ~ 4 ~ 0  (3) 

where O <  U < A < r. Similarly, the face weights of critical hard hexagons (squares) 
are given by 

w 1  = sin(2A + u)/sin 2A w 2  = sin u/(sin A sin 2A)”’ 

w3 = sin(A - u)/sin A w4 = sin(2A - u)/sin 2A ( 4 )  

w 5  = sin(A + u)/sin A 

where -A < U < 2A and A = n / 5 .  The parameters U and A are called the spectral and 
crossing parameters respectively. In terms of these parameters our results are 

8 = r u / A  ( 5 )  

for the eight-vertex model and 

for the hard hexagon (square) models. Equation ( 5 )  gives the usual relation between 
0 and the parameters U and A. In the latter more unusual case ( 6 ) ,  0 is a continuous 
function of U with corners at U = 0 and n / 5  where the eigenvalues cross. For pure 
hard hexagons ( u = - n / 5 )  we have 8 = 2 n / 3 ,  consistent with the geometry of an 
isotropic triangular lattice (Privman and Fisher 1984). The geometrical significance 
of the anisotropy angles, however, is best illustrated by considering the star-triangle 
equations (Baxter 1982) of figure 2. Defining supplementary angles 8‘ = n - 8, the 
ubiquitous and somewhat mysterious constraint on the spectral parameters u1 + u2 + 
u3 = A becomes the meaningful and immediately transparent statement e’, + 8;  + 8; = 257. 
This holds even for the anisotropy angles of the generalised hard hexagon models (6). 

We will now obtain the finite-size corrections to A,, by more direct means to test 
the validity of ( 2 ) .  First we consider the eight-vertex model. Recently, de Vega and 
Woynarovich (1985)  have proposed a method for calculating finite-size corrections in 
non-critical systems solvable by the Bethe ansatz. Hamer ( 1 9 8 9 ,  and independently 

Figure 2. The star-triangle equations satisfied by solvable lattice models. The Boltzmann 
weights of the two graphs are equal when the centre spin is summed out. The usual 
constraint U, + u2 + U) = A on the spectral parameters of the faces is equivalent to 0; + e; + 
0; = 2v which states that the sum of the anisotropy angles at the centre equals 2v. 
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Avdeev and Dorfel (1986), extended the method to the critical case. By a slight 
modification of their working, the free energy 

fN = - ( l /N)  In&,= Eo/N  (7) 

of the critical eight-vertex model for a strip of even width N with periodic boundary 
conditions is given by 

exp(2ui) - exp(2aj - A i )  
exp(2aj)-exp(2ui-Ai) fN=-- In N j = 1  

where aj are the solutions of the Bethe ansatz equation (9) of Hamer (1985). We use 
a and A for his A and y, respectively. Following de Vega and Woynarovich (1985) 
now leads to an expression for the free energy correction as 

where c N ( a )  is defined by their equation (2.9). Using a change of integration variables 
as in Hamer (1985), the above expression can be integrated to give 

fN - f = -(7r/6N2) sin(ru/A). (10) 

Comparing with (2), we see that indeed 8 = m / A  and c = 1 as is characteristic of 
models with continuously varying exponents. 

The finite-size corrections to the free energy for the hard hexagon (square) models 
have not yet been calculated analytically. Along the critical lines of these models, 
however, the eigenvalues of the row-to-row transfer matrix for a strip of width N are 
polynomials of degree N in the variable exp(2ui). Furthermore, under periodic 
boundary conditions, the eigenvalues satisfy the inversion identity (3.3) of Baxter and 
Pearce (1982). For moderately large N, this functional equation can be solved numeri- 
cally for the N zeros of the polynomials from which the transfer matrix eigenvalues 
A, can be obtained as a function of U. Table 1 shows sequences of estimators 

teff ( N )  = -( 6 N /  T ) (  Eo - Nf ) 

x ; ~ (  N )  = (N/277)  Re( E l  - E,)  

obtained in this way for the largest and next-largest eigenvalues respectively of interact- 
ing hard squares for the two typical values U = v/10 and U = 77/20. Since interacting 
hard squares belong to the tricritical Ising model class (Huse 1982) the sequences are 
expected, as N + 00, to approach the limits (7/ 10) sin 8 and (3/40) sin 0 respectively 
with 0 = 5u. These series extend considerably those obtained by Bartelt et a1 (1986) 
for N S  16 and the isotropic case. To the right of each column in table 1, we also 
show the accelerated sequence obtained by one iteration of the alternating-& algorithm 
(Barber et a1 1984). The agreement of the data with the theoretical prediction (2) is 
excellent for the whole range of u(O< U < ~ / 5 )  and confirms, to very high accuracy 
(typically 5-7 significant digits for c and 3-5 for x]), the identifications 0 = 5u, c = 7/ 10 
and x,  = 3/40. Similarly, for hard hexagons ( - 7 7 / 5  < U < 0, 1 r / 5  < U < 2 ~ / 5 ) ,  which 
lies in the three-state Potts universality class, we have obtained the largest eigenvalue 
series for N s 30 and found agreement with (2) to a 4-5 digit accuracy using c = 4/5 
(Cardy 1987) and the anisotropy angle 8 given by (6). 
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Table 1. Sequences of estimators ceR( N )  and x;~(  N) for largestand next-largest eigenvalues 
respectively of interacting hard squares for the two typical values U = 77/10 and U = 77/20. 

~~ ~ 

U = 77/10 U = 77/20 

N ceR( N)  accelerated cCR( N )  accelerated 

4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
Exact 

0.661 215 955 
0.688 830 406 
0.694 895 501 
0.697 108 589 
0.698 147 590 
0.698 714 951 
0.699 057 606 
0.699 279 997 
0.699 432 342 
0.699 541 181 
0.699 621 595 
0.699 682 664 

0.700 029 968 
0.700 010 183 
0.700 004 347 
0.700 002 15 1 
0.700001 181 
0.700 000 702 
0.700 000 443 
0.700 000 292 

0.700 000 000 

0.492 604 844 
0.495 220 940 
0.495 214 782 
0.495 145 908 
0.495 098 520 
0.495 067 654 
0.495 046 913 
0.495 032 418 
0.495 021 918 
0.495 014 076 
0.495 008 065 
0.495 003 356 

0.495 218 216 
0.495 007 602 
0.495 005 663 
0.495 056 598 
0.494 962 409 
0.495 971 491 
0.494 973 384 
0.494 974 047 

0.494 974 747 

U = 77/10 U = 77/20 

N x;'( N )  accelerated G R ( N )  accelerated 

4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
Exact 

0.073 148 629 
0.074 939 851 
0.075 195 311 
0.075 239 208 
0.075 236 61 1 
0.075 222 461 
0.075 206 188 
0.075 190 591 
0.075 176 444 
0.075 163 854 
0.075 152 712 
0.075 142 849 

0.075 243 328 
0.075 237 970 
0.075 238 211 
0.075 285 887 
0.074 935 925 
0.075 061 137 
0.075 067 933 
0.075 066 799 

0.075 000 000 

0.054 212 227 
0.053 779 515 
0.053 540 910 
0.053 414 116 
0.053 337 126 
0.053 285 735 
0.053 249 088 
0.053 221 669 
0.053 200 396 
0.053 183 418 
0.053 169 556 
0.053 158 027 

0.053 253 512 
0.052 960 738 
0.053 018 307 
0.053 027 336 
0.053 030 232 
0.053 031 458 
0.053 032 061 
0.053 032 407 

0.053 033 009 

Another solvable model for which we have numerically determined the anisotropy 
angle is magnetic hard squares (Pearce 1985). We have recently shown (Pearce and 
Kim 1987) that the multicritical T-manifold of this model exhibits continuously varying 
exponents with a conformal anomaly c = 1. Solving the inversion identity for this 
model allows us to determine with high accuracy the various eigenvalue levels. Analysis 
of the data for strip widths up to 32 with 8 = m / A  gives excellent agreement with the 
theoretical prediction ( 2 )  over the complete range 0 < U < A < 2 r / 3  where the spectral 
and crossing parameters are defined as in Pearce (1985) and Pearce and Kim (1987). 

Finally, we consider the critical q-state Potts model on the square lattice. This 
model is equivalent to the six-vertex model with special boundary conditions (Baxter 
et al 1976). These special boundary conditions lead to q-dependent c values in the 
free energy corrections (Blote et a1 1986). For the diagonal-to-diagonal transfer matrix, 
we conjecture that the anisotropy angle is again given by 8 = m / A  with the usual 
parametrisationJ;f= 2 cos A and (exp K 1  - l) /J;f= ./;r/(exp K 2 -  1 )  =sin u/sin(A - U )  
where K ,  and K 2  are the critical couplings. By a simple geometric argument (see 
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figure l (b ) )  this implies that the anisotropy factor of the row-to-row transfer matrix is 

sin 6 0 T U  
=tan -= tan -. 

‘= i+cos  e 2 2A 

In the limit K ,  + 0 ( 0  + O ) ,  the logarithmic derivative of the row-to-row transfer matrix 
with respect to K ,  gives the quantum Potts Hamiltonian (von Gehlen et af 1986) and, 
working to leading order, the anisotropy factor becomes 

T tan A 
4 A  ‘=-- K1 

in agreement with the X X Z  Hamiltonian representation of the quantum Potts model 
(Alcaraz et a1 1987, Barber 1987). 

We thank M N Barber for useful discussions. This work was done while one of us 
(DK) was a visitor to the University of Melbourne and the support of the Mathematics 
Department is gratefully acknowledged. 
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